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Problems for Week Nine 
 

Regular vs. Context-Free 

For each of the following languages, determine whether it is (a) regular or (b) context-free but NOT regular, and 

prove that your choice is correct. (Note: if you choose (a), you may want to exhibit an automaton or a regular 
expression—I recommend choosing whichever you feel less comfortable with. If you choose (b), observe that 
you will need to prove two things.) 

i. Σ = {a, b} and L = {(ab)
n
 | n ∈ ℕ }. 

 

 

 

 

ii. Σ = {a, b} and L = {(ab)
n
a

n
 | n ∈ ℕ }.  

 

 

 

 

iii. Σ = {a, b} and L = {(ab)
n
a

m
 | n, m ∈ ℕ and the total number of a's is even }. 

 

 

 

 

iv. Σ = {a, b} and L = { w ∈ Σ* | every prefix of w has at least as many a's as b's }. (This one’s tricky!) 

 

 

 

 

 

Turing Machines 

Although much of our discussion of Turing machines takes place at a high level, it's still instructive to try to 
design Turing machines at the level of individual states. 

i. Let Σ = {0, 1} and let L = { w ∈ Σ* | w is a palindrome } (recall that a palindrome is a string that's the 
same when read forwards and backwards). Draw a state-transition diagram of a TM for L. 

ii. Draw the state-transition diagram for a TM whose language is { a
n
b

n
c

n
 | n ∈ ℕ }. 
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The Story So Far 

From the “lava diagram” in lecture, you probably noticed that 

REG ⊆ R ⊆ RE 

Here, REG is the class of all regular languages, R is the class of all decidable languages, and RE is the class of 
all recognizable languages. 

On Problem Set Eight, you’ll show that REG ⊆ R. 

i. Show that REG ≠ R. 

 

 

ii. Show that R ⊆ RE. (Hint: What's the definition of R? What's the definition of RE? Expand out the req-
uisite terms and see what you find.) 

 

 

Closure Properties of R 

This question explores various closure properties of R. Because R corresponds to decidable problems, lan-
guages in R are precisely the languages for which you can write a method 

bool inL(string w) 

such that 

 for any string w ∈ L, calling inL(w) returns true. 

 for any string w ∈ L, calling inL(w) returns false. 

This means that we can reason about closure properties of the decidable languages by writing actual pieces of 
code. 

i. Let L₁ and L₂ be decidable languages over the same alphabet Σ. Prove that L₁ ∪ L₂ is also decidable. To 

do so, suppose that you have methods inL1 and inL2 matching the above conditions, then show how to write a 

method inL1uL2 with the appropriate properties. Then, briefly justify why your construction is correct. 

ii. Repeat problem (i), except proving that the R languages are closed under concatenation. 

 

Decidable Languages 

All regular languages are decidable, but below is a purported proof that the regular language described by the 
regular expression a*b is undecidable: 

Theorem: a*b is undecidable. 

Proof: By contradiction; assume a*b is decidable. Let D be a decider for it. Consider what happens 

when we run D on a string of infinitely many a's followed by a b, and on a string of infinitely 
many a's. Let's call this first string x and the second string y. Since D is a decider, it halts on all 
inputs, and therefore cannot run for an infinitely long time. Therefore, D must halt before read-

ing the last character of x and the last character of y. Because x and y are the same except for 
their last character, we see that D must have the same behavior when run on x and when run on 
y. If D accepts x, then D also accepts y, but y is not in the language a*b. Otherwise, D rejects x, 

but x is in the language a*b. Both cases contradict the fact that D is a decider for a*b. We have 
reached a contradiction, so our assumption must have been wrong. Thus a*b is undecidable. ■ 

What's wrong with this proof? 


