Problems for Week Nine

Regular vs. Context-Free

For each of the following languages, determine whether it is (a) regular or (b) context-free but NOT regular, and prove that your choice is correct. (Note: if you choose (a), you may want to exhibit an automaton or a regular expression—I recommend choosing whichever you feel *less* comfortable with. If you choose (b), observe that you will need to prove two things.)

i. $\Sigma = \{a, b\} \text{ and } L = \{(ab)^n \mid n \in \mathbb{N} \}.$

ii. $\Sigma = \{a, b\}$ and $L = \{(ab)^n a^n \mid n \in \mathbb{N} \}$.

iii. $\Sigma = \{a, b\}$ and $L = \{(ab)^n a^m \mid n, m \in \mathbb{N} \text{ and the total number of } a$'s is even $\}$.

iv. $\Sigma = \{a, b\}$ and $L = \{w \in \Sigma^* \mid \text{ every prefix of } w \text{ has at least as many } a \text{'s as } b \text{'s } \}$. (This one's tricky!)

Turing Machines

Although much of our discussion of Turing machines takes place at a high level, it's still instructive to try to design Turing machines at the level of individual states.

- i. Let $\Sigma = \{0, 1\}$ and let $L = \{w \in \Sigma^* \mid w \text{ is a palindrome }\}$ (recall that a palindrome is a string that's the same when read forwards and backwards). Draw a state-transition diagram of a TM for L.
- ii. Draw the state-transition diagram for a TM whose language is $\{a^n b^n c^n \mid n \in \mathbb{N} \}$.

The Story So Far

From the "lava diagram" in lecture, you probably noticed that

$$REG \subseteq R \subseteq RE$$

Here, **REG** is the class of all regular languages, **R** is the class of all decidable languages, and **RE** is the class of all recognizable languages.

On Problem Set Eight, you'll show that $\mathbf{REG} \subseteq \mathbf{R}$.

- i. Show that $\mathbf{REG} \neq \mathbf{R}$.
- ii. Show that $\mathbf{R} \subseteq \mathbf{RE}$. (Hint: What's the definition of \mathbf{R} ? What's the definition of \mathbf{RE} ? Expand out the requisite terms and see what you find.)

Closure Properties of R

This question explores various closure properties of \mathbf{R} . Because \mathbf{R} corresponds to decidable problems, languages in \mathbf{R} are precisely the languages for which you can write a method

such that

- for any string $w \in L$, calling inL(w) returns true.
- for any string $w \in L$, calling inL(w) returns false.

This means that we can reason about closure properties of the decidable languages by writing actual pieces of code.

- i. Let L_1 and L_2 be decidable languages over the same alphabet Σ . Prove that $L_1 \cup L_2$ is also decidable. To do so, suppose that you have methods *inL1* and *inL2* matching the above conditions, then show how to write a method *inL1uL2* with the appropriate properties. Then, briefly justify why your construction is correct.
- ii. Repeat problem (i), except proving that the **R** languages are closed under concatenation.

Decidable Languages

All regular languages are decidable, but below is a purported proof that the regular language described by the regular expression a*b is undecidable:

Theorem: a*b is undecidable.

Proof: By contradiction; assume a*b is decidable. Let D be a decider for it. Consider what happens when we run D on a string of infinitely many a's followed by a b, and on a string of infinitely many a's. Let's call this first string x and the second string y. Since D is a decider, it halts on all inputs, and therefore cannot run for an infinitely long time. Therefore, D must halt before reading the last character of x and the last character of y. Because x and y are the same except for their last character, we see that D must have the same behavior when run on x and when run on y. If x accepts x, then x also accepts y, but y is not in the language x. Otherwise, x rejects x, but x is in the language x. Both cases contradict the fact that x is a decider for x. We have reached a contradiction, so our assumption must have been wrong. Thus x is undecidable.

What's wrong with this proof?