

CS103A Handout 09

Winter 2020

Problems for Week Nine

Regular vs. Context-Free

For each of the following languages, determine whether it is (a) regular or (b) context-free but NOT regular, and

prove that your choice is correct. (Note: if you choose (a), you may want to exhibit an automaton or a regular
expression—I recommend choosing whichever you feel less comfortable with. If you choose (b), observe that
you will need to prove two things.)

i. Σ = {a, b} and L = {(ab)
n
 | n ∈ ℕ }.

ii. Σ = {a, b} and L = {(ab)
n
a

n
 | n ∈ ℕ }.

iii. Σ = {a, b} and L = {(ab)
n
a

m
 | n, m ∈ ℕ and the total number of a's is even }.

iv. Σ = {a, b} and L = { w ∈ Σ* | every prefix of w has at least as many a's as b's }. (This one’s tricky!)

Turing Machines

Although much of our discussion of Turing machines takes place at a high level, it's still instructive to try to
design Turing machines at the level of individual states.

i. Let Σ = {0, 1} and let L = { w ∈ Σ* | w is a palindrome } (recall that a palindrome is a string that's the
same when read forwards and backwards). Draw a state-transition diagram of a TM for L.

ii. Draw the state-transition diagram for a TM whose language is { a
n
b

n
c

n
 | n ∈ ℕ }.

2 / 2

The Story So Far

From the “lava diagram” in lecture, you probably noticed that

REG ⊆ R ⊆ RE

Here, REG is the class of all regular languages, R is the class of all decidable languages, and RE is the class of
all recognizable languages.

On Problem Set Eight, you’ll show that REG ⊆ R.

i. Show that REG ≠ R.

ii. Show that R ⊆ RE. (Hint: What's the definition of R? What's the definition of RE? Expand out the req-
uisite terms and see what you find.)

Closure Properties of R

This question explores various closure properties of R. Because R corresponds to decidable problems, lan-
guages in R are precisely the languages for which you can write a method

bool inL(string w)

such that

 for any string w ∈ L, calling inL(w) returns true.

 for any string w ∈ L, calling inL(w) returns false.

This means that we can reason about closure properties of the decidable languages by writing actual pieces of
code.

i. Let L₁ and L₂ be decidable languages over the same alphabet Σ. Prove that L₁ ∪ L₂ is also decidable. To

do so, suppose that you have methods inL1 and inL2 matching the above conditions, then show how to write a

method inL1uL2 with the appropriate properties. Then, briefly justify why your construction is correct.

ii. Repeat problem (i), except proving that the R languages are closed under concatenation.

Decidable Languages

All regular languages are decidable, but below is a purported proof that the regular language described by the
regular expression a*b is undecidable:

Theorem: a*b is undecidable.

Proof: By contradiction; assume a*b is decidable. Let D be a decider for it. Consider what happens

when we run D on a string of infinitely many a's followed by a b, and on a string of infinitely
many a's. Let's call this first string x and the second string y. Since D is a decider, it halts on all
inputs, and therefore cannot run for an infinitely long time. Therefore, D must halt before read-

ing the last character of x and the last character of y. Because x and y are the same except for
their last character, we see that D must have the same behavior when run on x and when run on
y. If D accepts x, then D also accepts y, but y is not in the language a*b. Otherwise, D rejects x,

but x is in the language a*b. Both cases contradict the fact that D is a decider for a*b. We have
reached a contradiction, so our assumption must have been wrong. Thus a*b is undecidable. ■

What's wrong with this proof?

